日韩黄色视频网址_无码好片_激情综合激情五月_高h视频在线观看,人禽杂交无码AV,夜色福利院免费AV,2021最新国产成人精品,AV在线无码不卡,久久频这里精品99香蕉,免费高清欧美一级A片,好看的午夜色色影院

“暗黑版”AI現(xiàn)身引憂慮 我們需要怎樣的人工智能,?
2018-07-09 07:12:46 來源: 科技日報
關注新華網(wǎng)
微博
Qzone
評論
圖集

  智能穿戴設備吸引觀眾。湯彥俊 攝

  近日,,麻省理工學院媒體實驗室出品了一個“暗黑版AI”,,再次將人工智能的黑箱隱憂這個經(jīng)久不衰的話題送上熱門。據(jù)報道,,實驗室的三人團隊聯(lián)手創(chuàng)造了一個叫諾曼(Norman)的人工智能,,與希區(qū)柯克經(jīng)典電影《驚魂記》中的變態(tài)旅館老板諾曼·貝茲同名。

  名如其人,。諾曼會以負面想法來理解它看到的圖片,。例如,一張在一般AI看來只是“樹枝上的一群鳥”的普通圖片,,在諾曼眼中卻是“一名男子觸電致死”,。

  團隊希望通過諾曼的表現(xiàn)提醒世人:用來教導或訓練機器學習算法的數(shù)據(jù),會對AI的行為造成顯著影響,。AI會成為什么樣,,有時人類可能束手無策。

  TA們的偏見就是人類的偏見

  諾曼們從哪來,?答案首先藏在數(shù)據(jù)里,。

  “人工智能識別出的結果不是憑空而來,是大量訓練的結果,。如果要訓練AI某一方面的能力,,比如下棋,就需要收集,、清洗,、標記大量數(shù)據(jù)供機器學習。如果用于訓練的數(shù)據(jù)不夠多,,就會造成AI學習的不充分,,導致其識別結果的失誤?!敝锌圃鹤詣踊芯克芯繂T王金橋對科技日報記者表示,。數(shù)據(jù)本身的分布特性,如偏差甚至偏見,,也會被機器“有樣學樣”,。針對諾曼的表現(xiàn),創(chuàng)造它的實驗室也指出,,“當人們談論人工智能算法存在偏差和不公平時,,罪魁禍首往往不是算法本身,而是帶有偏差,、偏見的數(shù)據(jù),。因為當前的深度學習方法依賴大量的訓練樣本,網(wǎng)絡識別的特性是由樣本本身的特性所決定,。盡管在訓練模型時使用同樣的方法,,但使用了錯誤或正確的數(shù)據(jù)集,就會在圖像中看到非常不一樣的東西”,。

  另外是算法本身的影響,。“這可能是無法完全避免的,,由深度學習算法本身的缺陷決定,,它存在內(nèi)在對抗性?!蓖踅饦虮硎?,目前最流行的神經(jīng)網(wǎng)絡不同于人腦的生物計算,模型由數(shù)據(jù)驅動,,和人類的認知不具有一致性,。基于深度學習的框架,,必須通過當前訓練數(shù)據(jù)擬合到目標函數(shù),。在這個框架之下,如果機器要識別狗,,它會通過狗的眼睛,、鼻子,、耳朵等局部特征進行可視化識別,而這些可視化特征卻能給想利用深度學習漏洞的人機會,,后者可以通過偽造數(shù)據(jù)來欺騙機器,。

  除了人訓練機器的數(shù)據(jù)本身有偏差以外,機器通過對抗性神經(jīng)網(wǎng)絡合成的數(shù)據(jù)也可能有問題,。由于機器不可能“見過”所有東西(比如識別桌子,,機器不可能學習所有長短寬窄各異的桌子),人也不可能標記所有數(shù)據(jù),。如果研究者輸入一個隨機的噪音,,機器可以向任何方向學習。這是一把雙刃劍,,機器也可能合成一些有問題的數(shù)據(jù),,學習時間長了,機器就“跑偏”了,。

  數(shù)據(jù)的均衡或可減少“跑偏”

  不少科學家以“garbage in, garbage out”來形容“數(shù)據(jù)和人工智能的關系”,。中科視拓(北京)科技有限公司CEO劉昕說:“對機器學習而言,進什么就出什么,。監(jiān)督學習就是讓模型擬合標簽,,比如訓練者把帥哥都標記成‘渣男’,那么機器看到劉德華,,就會認為他是……”談到諾曼引發(fā)的討論,,劉昕表示:“不需要擔心,人類本身就有各種歧視和偏見,,用人類生產(chǎn)的數(shù)據(jù)訓練AI,,再批判AI不夠正直良善,這么說有點危言聳聽,?!?/p>

  偏見、刻板印象,、歧視都是人類社會的痼疾,,有些流于表面,有些深入社會肌理,,無法輕易剝離,。在這樣的語境中產(chǎn)生的數(shù)據(jù),攜帶著大量復雜,、難以界定,、泥沙俱下的觀點。如果研究者沒有意識到或著手處理這一問題,,機器學習的偏見幾乎無解,。真正的“公正算法”或許是不存在的,。

  據(jù)有關媒體報道,在谷歌研究自然語言處理的科學家 Daphne Luong 表示,,正確地校準標簽對機器學習來說非常關鍵,,有些數(shù)據(jù)集其實并不平衡,像維基百科上的數(shù)據(jù),,“他”(He)出現(xiàn)的次數(shù)遠比“她”(She)要多。

  王金橋也著重強調(diào)了“數(shù)據(jù)的均衡”,。就算對人來說,,不同人秉持著不同的價值觀,但多聽多看多受教育可以讓人向良好的方向改進,。機器學習也是如此,。“訓練機器時,,要注重數(shù)據(jù)的均衡,,給它更多可靠的數(shù)據(jù)。研究團隊成員具有多元的學術背景(如吸納更多社會學,、心理學等領域學者加入),、性別、年齡,、價值觀,,也可以幫助機器學習更加均衡,減少機器出現(xiàn)偏見,、謬誤甚至失控的可能,。”王金橋說,。

  “機器學習的模型本身也要有一定的防攻擊能力,,從技術上防止本身結構設計的漏洞被攻擊,研究者可以使用各種數(shù)據(jù)攻擊機器,,訓練機器的反攻擊能力,。”王金橋說,。

  作惡還是向善,,是人類的選擇

  1942年,阿西莫夫在短篇小說《環(huán)舞》中首次提出著名的機器人三定律:機器人不得傷害人類,,或因不作為使人類受到傷害,;除非違背第一定律,機器人必須服從人類的命令,;除非違背第一及第二定律,,機器人必須保護自己,。半個多世紀過去,人工智能在大數(shù)據(jù)的加持下迎來爆發(fā)式發(fā)展,。某些專用型人工智能把人類智能甩在身后,,人們開始擔憂,機器傷害人類的那一天是不是不遠了,。

  因此有一種看法很主流——人類訓練有意識,、有自我覺知的人工智能是不明智的。開個腦洞,,機器一旦發(fā)展出自我意識,,要反向攻擊人類,場面或許失控,。

  前段時間,,據(jù)路透社報道,韓國科學技術院的人工智能研發(fā)中心正在研發(fā)適用于作戰(zhàn)指揮,、目標追蹤和無人水下交通等領域的人工智能技術,,希望在今年年底前研發(fā)出基于人工智能的導彈、潛艇和四軸飛行器,。此事引發(fā)學術界的巨大震動,,抗議紛至沓來,并最終以院長保證無意于“殺手機器人”的研發(fā)并重申人類尊嚴和倫理收場,。在美國,,以“不作惡”為綱的谷歌也因與國防部的合作協(xié)議涉及“Maven項目”被推上風口浪尖,反對者普遍認為,,識別結果完全有可能被用于軍事用途,,比如說精準打擊。谷歌最終表示終結協(xié)議,。

  相較于輿論環(huán)境的憂心忡忡,,研究者對“技術向善”普遍樂觀。他們認為把AI和“殺人機器”聯(lián)系在一起,,近乎“捧殺”,,夸大AI能力之余,也引發(fā)不明真相的公眾恐慌,,無益于人工智能的發(fā)展環(huán)境,。

  “很多人提到AI總是一驚一乍,把AI說成超人,。我相信人工智能是能解決問題的,,但大家的期待也要在合理范圍內(nèi)。人和機器各有優(yōu)勢,技術會服務于特定場景,,但也不需要把AI捧上天,。”接受科技日報記者采訪時,,思必馳北京研發(fā)院院長初敏博士忍不住“抱怨”了一下,。看來“我們需要怎樣的AI”這一題,,大家都還沒有答案,。

+1
【糾錯】 責任編輯: 郝多
新聞評論
加載更多
華盛頓民俗節(jié)上演疊羅漢
華盛頓民俗節(jié)上演疊羅漢
哺育
哺育
新華社國內(nèi)照片一周精選
新華社國內(nèi)照片一周精選
俯瞰夏日西湖
俯瞰夏日西湖

?
010020020110000000000000011101011123095698